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A note on Abel’s partial summation formula
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Abstract. Several applications of Abel’s partial summation formula to the convergence of
series of positive vectors are presented. For example, when the norm of the ambient ordered
Banach space is associated with a strong order unit, it is shown that the convergence of
the series

∑
xn implies the convergence in density of the sequence (nxn)n to 0. This is

done by extending the Koopman–von Neumann characterization of convergence in density.
Also included is a new proof of the Jensen–Steffensen inequality based on Abel’s partial
summation formula and a trace analogue of the Tomić–Weyl inequality of submajorization.
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1. Introduction

Abel’s partial summation formula (also known as Abel’s transformation) as-
serts that every pair of families (ak)n

k=1, (bk)n
k=1 of complex numbers verifies

the identity

n∑

k=1

akbk =
n−1∑

k=1

⎡

⎣(ak − ak+1)

⎛

⎝
k∑

j=1

bj

⎞

⎠

⎤

⎦ + an

⎛

⎝
n∑

j=1

bj

⎞

⎠ . (Ab↑)

This identity, which appears in the proof of Theorem III in [1], is instru-
mental in deriving a number of important results such as the Abel-Dirichlet
criterion of convergence for signed series, the Abel theorem on power series, the
Abel summation method (see [4,23]), Kronecker’s lemma about the relation-
ship between the convergence of infinite sums and the convergence of sequences
(see [20], Lemma IV.3.2, p. 390), algorithms for establishing identities involving
harmonic numbers and derangement numbers [3], the variational characteriza-
tion of the level sets corresponding to majorization in R

N [24], Mertens’ proof
of his theorem on the sum of the reciprocals of primes [25] etc.
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Abel used his formula (Ab↑) through an immediate consequence of it (known
as Abel’s inequality): if a1 ≥ a2 ≥ · · · ≥ an ≥ 0 and b1, b2, ..., bn ∈ C, then

∣
∣
∣
∣
∣

n∑

k=1

akbk

∣
∣
∣
∣
∣
≤ a1 max

1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

bk

∣
∣
∣
∣
∣
.

Many other striking applications of this inequality may be found in the
books of Pečarić, Proschan and Tong [14] and Steele [21].

Remark 1.1. Abel’s formula (Ab↑) has the following backwards companion:

n∑

k=1

akbk =
n−1∑

k=1

⎡

⎣(ak+1 − ak)

⎛

⎝
n∑

j=k+1

bj

⎞

⎠

⎤

⎦ + a1

⎛

⎝
n∑

j=1

bj

⎞

⎠ . (Ab↓)

A way to bring together the formulas (Ab↑) and (Ab↓) is as follows:
n∑

k=1

akbk =
k−1∑

j=1

[

(aj − aj+1)

(
j∑

i=1

bi

)]

+ ak

(
k∑

i=1

bi

)

(Ab)

+ ak+1

(
n∑

i=k+1

bi

)

+
n∑

j=k+2

⎡

⎣(aj − aj−1)

⎛

⎝
n∑

i=j

bi

⎞

⎠

⎤

⎦ ,

for any index k.

It is worth remarking that the formulas (Ab↑) and (Ab↓) (as well as Ab)
extend verbatim to the context of (not necessarily commutative) bilinear maps

Φ : E × F → G,

where E, F and G are three vector spaces over the same base field K. For
example, the following identities hold true for all families (xk)n

k=1 and (yk)n
k=1

of elements belonging, respectively, to E and F :
n∑

k=1

Φ(xk, yk) =
n−1∑

k=1

Φ

⎛

⎝xk − xk+1,

k∑

j=1

yj

⎞

⎠ + Φ

⎛

⎝xn,

n∑

j=1

yj

⎞

⎠ (ΦA1)

=
n−1∑

k=1

Φ

⎛

⎝
k∑

j=1

xj , yk − yk+1

⎞

⎠ + Φ

⎛

⎝
n∑

j=1

xj , yn

⎞

⎠ (ΦA2)

and
n∑

k=1

Φ(xk, yk) =
n∑

k=2

Φ

⎛

⎝xk − xk−1,

n∑

j=k

yj

⎞

⎠ + Φ

⎛

⎝x1,

n∑

j=1

yj

⎞

⎠ (ΦA3)

=
n∑

k=2

Φ

⎛

⎝
n∑

j=k

xj , yk − yk−1

⎞

⎠ + Φ

⎛

⎝
n∑

j=1

xj , y1

⎞

⎠ . (ΦA4)
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Moreover, these identities also work (with obvious changes) when the summa-
tion range is from m to n whenever 1 ≤ m ≤ n; this represents the special
case where x1 = · · · = xm−1 = 0 and y1 = · · · = ym−1 = 0.

The aim of this paper is to illustrate the formulas (ΦA1)–(ΦA4) in the
context of ordered Banach spaces. For the convenience of the reader some very
basic facts concerning these spaces are recalled in the next section. Then in
Sect. 3 we present applications to the convergence of series in ordered Banach
spaces. Section 4 is devoted to a new short proof of the Jensen–Steffensen
inequality based on Abel’s partial summation formula and to an extension of
this inequality to the framework of Banach lattices. Finally, in Sect. 5 we prove
a trace analogue of the Tomić–Weyl inequality of submajorization.

2. Preliminaries on ordered Banach spaces

An ordered vector space is any real vector space E endowed with a convex
cone E+ (the cone of positive elements) such that

E+ ∩ (−E+) = {0} and E = E+ − E+.

If E is at the same time a Banach space, we call E an ordered Banach
space when the following compatibility condition between the two structures
is fulfilled:

0 ≤ x ≤ y implies ‖x‖ ≤ ‖y‖ .

The usual real Banach spaces like RN (the Euclidean N -dimensional space),
C (K) (=the space of all continuous functions defined on a compact Hausdorff
space K), the Lebesgue spaces Lp

(
R

N
)

(for 1 ≤ p ≤ ∞), as well as their
infinite dimensional discrete analogues c and �p) are endowed with order re-
lations that behave much better. Indeed, they are all Banach lattices, that is,
vector lattices (meaning there exist max {x, y} and min {x, y} for every pair
of elements) plus the compatibility condition

|x| ≤ |y| implies ‖x‖ ≤ ‖y‖ ;

here the modulus of an element z is defined as |z| = max {−z, z} .
The order relation in a function space is usually the point-wise one defined

by

f ≤ g if and only if f(t) ≤ g(t) for all t;

this remark includes the case of RN , whose ordering is defined by coordinates.
A bounded linear operator T ∈ L(E,F ) acting on ordered Banach spaces

is called positive if it maps positive elements into positive elements. Typical
examples are the integration operators.

In the realm of Hilbert spaces H one encounters a rather different concept
of positivity. Precisely, the Banach space A(H), of all bounded self-adjoint
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linear operators A : H → H, becomes an ordered vector space when endowed
with the positive cone

A(H)+ = {A ∈ A(H) : 〈Ax, x〉 ≥ 0 for all x ∈ H} .

Though this ordering does not make A(H) a Banach lattice, it has many
nice features exploited by the spectral theory of these operators. In particular,
A(H) is an ordered Banach space such that

−A ≤ B ≤ A implies ‖B‖ ≤ ‖A‖
and every order bounded increasing sequence of operators has a least upper
bound. Moreover, since

‖A‖ = sup
‖x‖=1

|〈Ax, x〉| ,

we have ‖A‖ ≤ M if and only if −M · I ≤ A ≤ M · I, where I is the identity
of H. See Simon [17].

A nice account on the basic theory of Banach lattices and positive operators
may be found in the classical book of Schaefer [19], while the general theory
of ordered Banach spaces is available in the books of Lacey [7] and Schaefer
[18].

In the next section we shall be interested in the following special class of
bilinear maps acting on ordered Banach spaces.

Definition 2.1. Suppose that E, F and G are ordered Banach spaces. A bilinear
map Φ : E × F → G is called positive if

x ≥ 0 and y ≥ 0 imply Φ(x, y) ≥ 0.

Notice that a positive bilinear map verifies the following property of mono-
tonicity:

0 ≤ x1 ≤ x2 and 0 ≤ y1 ≤ y2 imply Φ (x1, y1) ≤ Φ(x2, y2) .

Indeed, Φ (x2, y2) − Φ(x1, y1) = Φ(x2 − x1, y2) + Φ(x1, y2 − y1) ≥ 0.
Using formula (ΦA2) and the property of monotonicity one can easily

prove the following extension of Abel’s inequality:

Proposition 2.2. Suppose that Φ : E × F → G is a positive bilinear map. If
m ≤ ∑k

i=1 xi ≤ M in E (for k = 1, ..., n) and y1 ≥ y2 ≥ · · · ≥ yn ≥ 0 in F,
then from formula (ΦA2) it follows that

Φ(m, y1) ≤
n∑

k=1

Φ(xk, yk) ≤ Φ(M,y1).

Notice also that a positive bilinear map acting on ordered Banach spaces
is always bounded, which means the existence of a positive constant C such
that

‖Φ(x, y)‖ ≤ C ‖x‖ ‖y‖ for all (x, y) ∈ E × F.
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The proof follows easily by adapting the argument of Theorem 5.5 (ii) in
[18], p. 228. The smallest constant C for which the above inequality holds for
all (x, y) ∈ E × F is called the norm of Φ and is denoted ‖Φ‖ .

Examples of positive bilinear maps are numerous. The simplest one is the
pairing R×E → E, (α, x) → αx, associated with any ordered vector space E.

If E is a Banach lattice, then the duality bilinear map B : E × E′ → R,
given by B(x, x′) = x′(x) is also positive.

When E, F and G are three Banach lattices all isomorphic with L1(μ)
spaces or with L∞(μ) spaces, then the composition map Φ : L(E,F )×L(F,G)
→ L(E,G), Φ(S, T ) = T ◦ S, is a positive bilinear map. See Schaefer [19],
Theorem 1.5, p. 232.

The operator of convolution (f, g) → ∫
R

f(x − y)g(y)dy defines a positive
bilinear map on L1(R) × L1(R).

Last, but not least, the trace functional defines a positive bilinear map

Φ : A(RN ) × A(RN ) → R, Φ(A,B) = Trace (AB) .

Indeed, if A and B are positive, then A1/2BA1/2 is also a positive operator
and Trace (AB) = Trace

(
A1/2BA1/2

)
. Notice that Φ defines a scalar product

on A(RN ) whose associated norm is the Frobenius norm,

|||A||| =
(
Trace

(
A2

))1/2
.

This norm is equivalent to the usual operator norm on A(RN ),

‖A‖ = sup
‖x‖=1

|〈Ax, x〉| .

3. Application to the convergence of positive series

Many tests of convergence for positive series extend to the framework of or-
dered Banach spaces as sketched in the preceding section. For example, so is
the case for Olivier’s test of convergence:

Theorem 3.1. Suppose that Φ : E × F → G is a positive bilinear map acting
on ordered Banach spaces and (xn)n and (yn)n are two sequences of positive
elements belonging, respectively, to E and F that fulfil the following conditions:

(a) (xn)n is decreasing and ‖xn‖ → 0;
(b) The series

∑
Φ(xn, yn) is convergent.

Then

lim
n→∞ Φ

(

xn,

n∑

k=1

yk

)

= 0.
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Proof. Indeed, for ε > 0, arbitrarily fixed, one can find an index N > 1 such
that ‖∑∞

k=N Φ(xk, yk)‖ < ε/2. Then the inequalities

0 ≤ Φ(xn,

n∑

k=N

yk) ≤
n∑

k=N

Φ(xk, yk) ≤
∞∑

k=N

Φ(xk, yk),

yield ‖Φ(xn,
∑n

k=N yk)‖ < ε/2 for every n ≥ N. Since ‖xn‖ → 0 and

‖Φ(xn, yk)‖ ≤ ‖Φ‖ ‖xn‖ sup
1≤k≤N−1

‖yk‖

for every k = 1, ..., N − 1, we infer the existence of an index Ñ such that for
every n ≥ Ñ ,

sup
1≤k≤N−1

‖Φ(xn, yk)‖ < ε/2N.

Therefore
∥
∥
∥
∥
∥
Φ

(

xn,
n∑

k=1

yk

)∥
∥
∥
∥
∥

≤
N−1∑

k=1

‖Φ(xn, yk)‖ +

∥
∥
∥
∥
∥
Φ(xn,

n∑

k=N

yk)

∥
∥
∥
∥
∥

< ε/2 + ε/2 = ε

for every n ≥ Ñ and the proof is done. �

Corollary 3.2. If
∑

xn is a convergent series of positive elements in an ordered
Banach space E and the sequence (xn)n is decreasing, then n ‖xn‖ → 0.

Olivier’s test of convergence represents the scalar case of Corollary 3.2. In
his paper from 1827, Olivier wrongly claimed that nxn → 0 is also a sufficient
condition for the convergence of a numerical positive series whose terms form
a sequence decreasing to 0. One year later, Abel [2] disproved this claim by
considering the case of the divergent series

∑
1

n log n . See [13] for more details
about this story that played an important role in rigorizing the theory of
numerical series.

Theorem 3.1 allows us to derive an analogue of Abel’s partial summation
for series:

Theorem 3.3. Suppose that Φ : E × F → G is a positive bilinear map acting
on ordered Banach spaces and (xn)n and (yn)n are two sequences of positive
elements belonging, respectively, to E and F such that (xn)n is decreasing and
‖xn‖ → 0. Then the series

∑
Φ(xn, yn) and

∑
Φ(xn − xn+1,

∑n
k=1 yk) have

the same nature and in case of convergence they have the same sum,
∞∑

n=1

Φ(xn, yn) =
∞∑

n=1

Φ

(

xn − xn+1,

n∑

k=1

yk

)

.
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Proof. One implication follows easily from Theorem 3.1 and Abel’s partial
summation formula (ΦA1),

n∑

k=1

B (xk, yk) =
n−1∑

k=1

B

⎛

⎝xk − xk+1,

k∑

j=1

yj

⎞

⎠ + B

⎛

⎝xn,

n∑

j=1

yj

⎞

⎠.

Conversely, suppose the series
∑∞

n=1 Φ(xn − xn+1,
∑n

k=1 yk) is convergent.
Then, according to our hypotheses,

0 ≤ Φ

(

xn,
n∑

k=1

yk

)

≤
∞∑

k=n

Φ

⎛

⎝xk − xk+1,
n∑

j=1

yj

⎞

⎠

≤
∞∑

k=n

Φ

⎛

⎝xk − xk+1,

k∑

j=1

yj

⎞

⎠

and the squeeze theorem allows us to conclude that Φ (xn,
∑n

k=1 yk) → 0. The
proof ends with a new appeal to formula (ΦA1). �

Corollary 3.4. Suppose that
∑

xn is a convergent series of positive elements in
an ordered Banach space E. Then the series

∑
n (

∑∞
k=n xk) and

∑
nxn have

the same nature and in case of convergence they have the same sum,
∞∑

n=1

( ∞∑

k=n

xk

)

=
∞∑

n=1

nxn.

Coming back to Olivier’s test of convergence, it is worth noting that in the
absence of monotonicity, only a weaker form of Corollary 3.2 holds true.

Lemma 3.5. If
∑

xn is a convergent series of positive elements in an ordered
Banach space E, then

lim
n→∞

1
n

n∑

k=1

kxk = 0.

Proof. Indeed, by denoting Sn =
∑n

k=1 xk for n = 1, 2, 3, ..., the sequence
(Sn)n is convergent, say to S. According to Cesàro’s theorem,

lim
n→∞

S1 + · · · + Sn−1

n
= S,

whence

lim
n→∞

a1 + 2a2 + · · · + nan

n
= lim

n→∞

(

Sn − S1 + · · · + Sn−1

n

)

= 0.

�
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If
∑

xn is a convergent series of positive elements in a Banach lattice E,
then for every choice of the signs ± the series

∑ ±xn is also convergent. There-
fore, for every continuous linear functional x′ ∈ E′ we have

lim
n→∞

1
n

n∑

k=1

k |x′ (xk)| = 0,

that is, the sequence (nxn)n is weakly mixing to 0. See Zsidó [26] for a theory
of these sequences.

Suppose now that E is an ordered Banach space with a strong order unit
u > 0 and the norm of E is associated with the strong order unit. This means
that

E =
∞⋃

n=1

[−nu, nu]

and

‖x‖ = inf {λ > 0 : x ∈ [−λu, λu]} .

Examples of such spaces are C(K), L∞(μ), c, �∞, A(H) etc. For them
one can reformulate the conclusion of Lemma 3.5 in terms of convergence in
density.

Definition 3.6. A sequence (xn)n of elements belonging to a Banach space E
converges in density to x ∈ E (abbreviated, (d)- lim

n→∞ xn = x) if for every ε > 0

the set A(ε) = {n : ‖xn − x‖ ≥ ε} has zero density, that is,

lim
n→∞

|A(ε) ∩ {1, . . . , n}|
n

= 0.

Here |·| stands for cardinality.
Introduced by Koopman and von Neumann in [6], this concept has proved

useful in ergodic theory and its applications. See the monograph of Furstenberg
[5].

The following result provides a discrete analogue of Koopman–von Neu-
mann’s characterization of convergence in density within the framework of
ordered Banach spaces.

Theorem 3.7. Suppose that E is an ordered Banach space whose norm is as-
sociated with a strong order unit u > 0. Then for every sequence (xn)n of
positive elements of E,

lim
n→∞

1
n

n∑

k=1

xk = 0 ⇒ (d)- lim
n→∞ xn = 0.

The converse works under additional hypotheses, for example, for bounded
sequences.
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Proof. Assuming lim
n→∞

1
n

∑n
k=1 xk = 0, we associate with each ε > 0 the set

Aε = {n ∈ N : xn ≥ εu} . Since

0 ≤ |{1, ..., n} ∩ Aε|
n

u ≤ 1
n

n∑

k=1

xk

ε

≤ 1
εn

n∑

k=1

xk → 0 as n → ∞,

we infer that each of the sets Aε has zero density. Therefore (d)- lim
n→∞ xn = 0.

Suppose now that (xn)n is a bounded sequence and (d)- lim
n→∞ xn = 0. Since

boundedness in norm is equivalent to boundedness in order, there is a number
C > 0 such that xn ≤ Cu for all n. Then for every ε > 0 there is a set J of
zero density outside which xn < εu and we have

1
n

n∑

k=1

xk =
1
n

∑

k∈{1,...,n}∩J

xk +
1
n

∑

k∈{1,...,n}\J

xk

≤ |{1, ..., n} ∩ J |
n

· Cu + εu.

Since lim
n→∞

|{1,...,n}∩J|
n = 0, we conclude that lim

n→∞
1
n

∑n
k=1 xk = 0. �

Corollary 3.8. If
∑

xn is a convergent series of positive elements in an ordered
Banach space E whose norm is associated with a strong order unit, then

(d)- lim
n→∞ nxn = 0.

Simple numerical examples show that the conclusion of Corollary 3.8 cannot
be improved.

4. Connection with Jensen–Steffensen inequality

From the bilinear form of Abel’s partial summation formula (see (ΦA1) and
(ΦA3) above) we infer the following result that offers instances where the sum
of non necessarily positive elements is yet nonnegative.

Theorem 4.1. Suppose that E, F and G are ordered vector spaces and Φ :
E×F → G is a positive bilinear map. If x1, x2, ..., xn ∈ E and y1, y2, ..., yn ∈ F
satisfy one of the following two conditions

(i) x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 and
j∑

k=1

yk ≥ 0 for all j ∈ {1, 2, ..., n},

(ii) 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn and
n∑

k=j

yk ≥ 0 for all j ∈ {1, 2, ..., n},
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1018 C. P. Niculescu, M. M. Stănescu AEM

then
n∑

k=1

Φ(xk, yk) ≥ 0.

The alert reader will recognize here the framework of another important
result in real analysis, the Steffensen extension of Jensen’s inequality:

Theorem 4.2. (Steffensen [22]) Suppose that x1, ..., xn is a monotonic family
of points in an interval [a, b] and w1, ..., wn are real weights such that

n∑

k =1

wk = 1 and 0 ≤
m∑

k =1

wk ≤
n∑

k =1

wk for every m ∈ {1, ..., n}. (dSt)

Then every convex function f defined on [a, b] verifies the inequality

f

(
n∑

k=1

wkxk

)

≤
n∑

k=1

wkf(xk). (JSt)

The proof of Theorem 4.2 can be easily reduced to the case of continuous
convex functions and next (via an approximation argument) to the case of
piecewise linear convex functions. Taking into account the following result
that describes the structure of piecewise linear convex functions, the proof of
Theorem 4.2 reduces ultimately to the case of the absolute value function.

Theorem 4.3. (Hardy-Littlewood-Polya) Let f : [a, b] → R be a piecewise linear
convex function. Then f is the sum of an affine function and a linear combi-
nation, with positive coefficients, of translates of the absolute value function.
In other words, f is of the form

f(x) = αx + β +
n∑

k=1

ck|x − xk|

for suitable α, β, x1, ..., xn ∈ R and suitable nonnegative coefficients c1, . . . , cn.

Simple proofs are available in [16] and [10], pp. 34-35.

Proof. (of Theorem 4.2) We have already noted that the critical case is that
of the absolute value function. This can be settled as follows. Assuming the
ordering x1 ≤ · · · ≤ xn (to make a choice), we infer that

0 ≤ x+
1 ≤ · · · ≤ x+

n

and

x−
1 ≥ · · · ≥ x−

n ≥ 0

where z+ = max {z, 0} and z− = max {−z, 0} denote, respectively, the positive
part and the negative part of any element z. According to Theorem 4.1 (applied
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to the bilinear map B(w, x) = wx) we have
n∑

k=1

wkx+
k ≥ 0 and

n∑

k=1

wkx−
k ≥ 0,

equivalently
∣
∣
∣
∣
∣

n∑

k=1

wkxk

∣
∣
∣
∣
∣
≤

n∑

k=1

wk |xk| ,

and the proof is done. �

As was noted in [10], Exercise 3, p. 184, Theorem 4.3 does not extend to
higher dimensions. However, there is a nontrivial class of convex functions for
which Steffensen’s inequality still works. Given an order interval [u, v] of a
Banach lattice E, let us denote by Cv0([u, v], E) the closure (in the point-wise
convergence topology) of the convex cone consisting of all functions f : [u, v] →
E of the form

f(x) = A(x) +
n∑

k=1

ck|x − xk|

for some affine function A : E → E, some elements x1, ..., xn ∈ [u, v] and some
positive coefficients c1, ..., cn. The functions belonging to Cv0([u, v], E) satisfy
the condition of convexity

f ((1 − λ) x + λy) ≤ (1 − λ) f(x) + λf(y)

for all x, y ∈ E and λ ∈ [0, 1] (inequality taking place in the ordering of E).
An inspection of the argument of Theorem 4.2 easily shows that this result
still works for functions belonging to Cv0([u, v], E):

Theorem 4.4. (The generalization of the Jensen–Steffensen Inequality) Sup-
pose that E is a Banach lattice, x1, ..., xn is a monotonic family of points in
an order interval [u, v] of E and w1, ..., wn is a family of real weights. Then
every function f belonging to Cv0([u, v], E) verifies the inequality

f

(
n∑

k=1

wkxk

)

≤
n∑

k=1

wkf(xk).

5. A connection with majorization theory

The theory of majorization provides a unified approach to the analysis of a
number of models in economics, finance, risk management, genetics etc. and
is masterfully exposed in the remarkable book of Marshall, Olkin and Arnold
[8].
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Given a vector x ∈ R
N of components x1, ..., xN , let x↓ be the vector with

the same entries as x but rearranged in decreasing order,

x↓
1 ≥ · · · ≥ x↓

N .

The vector x is submajorized by another vector y (abbreviated, x≺wy) if

k∑

i=1

x↓
i ≤

k∑

i=1

y↓
i for k = 1, ..., N

and majorized (abbreviated, x≺y) if in addition

N∑

i=1

x↓
i =

N∑

i=1

y↓
i .

The following result outlines a connection between Abel’s partial summa-
tion formula and the Tomić–Weyl inequality of majorization ([10], Theorem
1.10.4, p.57):

Theorem 5.1. Suppose that Φ : E × E → G is a positive bilinear map and
x1, x2, ..., xn is a decreasing sequence of elements of E. If u1, u2, ..., un and
v1, v2, ..., vn are two families of elements of E such that

u1 ≥ u2 ≥ · · · ≥ un ≥ 0 and
j∑

k=1

uk ≤
j∑

k=1

vk for j ∈ {1, 2, ..., n},

then
n∑

k=1

Φ(xk, uk) ≤
n∑

k=1

Φ(xk, vk)

and
n∑

k=1

Φ(uk, xk) ≤
n∑

k=1

Φ(vk, xk) .

Proof. Indeed, according to (ΦA1),

n∑

k=1

Φ(xk, uk) =
n−1∑

k=1

Φ

⎛

⎝xk − xk+1,

k∑

j=1

uj

⎞

⎠ + Φ

⎛

⎝xn,

n∑

j=1

uj

⎞

⎠

≤
n−1∑

k=1

Φ

⎛

⎝xk − xk+1,
k∑

j=1

vj

⎞

⎠ + Φ

⎛

⎝xn,
n∑

j=1

vj

⎞

⎠

=
n∑

k=1

Φ(xk, vk) .
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On the other hand from (ΦA2) we infer that

n∑

k=1

Φ(uk, xk) =
n−1∑

k=1

Φ

⎛

⎝
k∑

j=1

uj , xk − xk+1

⎞

⎠ + Φ

⎛

⎝
n∑

j=1

uj , xn

⎞

⎠

≤
n−1∑

k=1

Φ

⎛

⎝
k∑

j=1

vj , xk − xk+1

⎞

⎠ + Φ

⎛

⎝
n∑

j=1

vj , xn

⎞

⎠

=
n∑

k=1

Φ(vk, xk) .

�

In the particular case where E = A(RN ), G = R and Φ(A,B) = Trace
(AB), Theorem 5.1 yields the inequality

n∑

k=1

Trace A2
k ≤

n∑

k=1

Trace AkBk,

provided that the self-adjoint operators Ak and Bk satisfy the conditions

A1 ≥ A2 ≥ · · · ≥ An ≥ 0 and
j∑

k=1

Ak ≤
j∑

k=1

Bk for j ∈ {1, 2, ..., n}.

Combining this with the Cauchy-Schwarz inequality,
(

n∑

k=1

Trace AkBk

)2

≤
(

n∑

k=1

Trace A2
k

) (
n∑

k=1

Trace B2
k

)

,

we arrive at the following trace inequality ascribed to K. L. Chung:
n∑

k=1

Trace A2
k ≤

n∑

k=1

Trace B2
k.

The function A → Trace (f(A)) is convex on A(RN ) whenever f : R → R

is a convex function. See [15], Proposition 2, p. 288. Thus, Chung’s inequality
is an illustration of the following trace analogue of the Tomić–Weyl inequality
of submajorization:

Theorem 5.2. Let f : R → R be a nondecreasing convex function. If A1, A2, ...,
An and B1, B2, ..., Bn are two families of elements of A(RN ) such that

A1 ≥ A2 ≥ · · · ≥ An ≥ 0 and
j∑

k=1

Ak ≤
j∑

k=1

Bk for j ∈ {1, 2, ..., n},
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then
n∑

k=1

Trace f (Ak) ≤
n∑

k=1

Trace f (Bk).

Proof. We will consider here the case where f is continuously differentiable.
The general case can be deduced from this one by using approximation ar-
guments. Since the function A → Trace f(A) is convex on A(RN ), for each
λ ∈ (0, 1] we have

Trace f (A + λ(X − A)) − Trace f(A)
λ

≤ Trace f(X) − Trace f(A),

whence we infer (by letting λ → 0) that

Trace [f ′(A)(X − A)] ≤ Trace f(X) − Trace f(A).

According to the bilinear form of Abel’s partial summation formula (ΦA1),

n∑

k=1

[Trace f(Bk) − Trace f(Ak)] ≥
n∑

k=1

Trace [f ′(Ak)(Bk − Ak)]

=
n∑

k=1

Trace

[

f ′(An)
n∑

k=1

(Bk − Ak)

]

+
n−1∑

m=1

Trace

[

(f ′(Am) − f ′(Am+1))
m∑

k=1

(Bk − Ak)

]

,

and the right hand side is a sum of nonnegative terms due to the fact that

U ≤ V in A(RN ) implies Trace h(U) ≤ Trace h(V )

for all increasing and continuous functions h : R → R. See [15], Proposition
1, p. 288. The proof ends by noting that the derivative of any continuously
differentiable function is increasing and continuous. �

An inspection of the argument of Theorem 5.2 shows that this result also
works for nondecreasing convex functions f defined on an arbitrary interval I
provided that they are continuous and the spectra of the operators Ak and Bk

are included in I. The variant of Theorem 5.2 for log convex functions (such
as Trace

(
eA

)
) can be easily obtained using the same idea.
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I, pp. 66–92, Christiania, 1839. http://archive.org/stream/oeuvrescomplte01abel

[2] Abel, N.H.: Note sur le memoire de Mr. L. Olivier No. 4 du second tome de ce journal,
ayant pour titre “Remarques sur les series infinies et leur convergence” J. reine angew.
Math. 3 (1828), 79–81. Available from the Göttinger Digitalisierungszentrum at http://
gdz.sub.uni-goettingen.de/no cache/dms/load/toc/?IDDOC=238618

[3] Chen, W.Y.C., Hou, Q.H., Jin, H.T.: The Abel–Zeilberger algorithm. Electron. J. Com-
bin. 18, 17 (2011)

[4] Choudary, A.D.R., Niculescu, C.P.: Real Analysis on Intervals. Springer, Berlin (2014)
[5] Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory.

Princeton University Press, Princeton (1981)
[6] Koopman, B.O., von Neumann, J.: Dynamical systems of continuous spectra Proc. Natl.

Acad. Sci. USA 18, 255–263 (1932)
[7] Lacey, H.E.: Isometric Theory of Classical Banach Spaces. Springer, Berlin (1974)
[8] Marshall, A.W., Olkin, I., Arnold, B.: Inequalities: Theory of Majorization and Its

Application, 2nd edn. Springer, Berlin (2011)
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